silicone-oil-preparation

How to Use Silicone Oil? Different Uses Explained

Imagine a substance having usage ranging from medicine to aviation. This might seem skeptical but there is one chemical that has established its place in such a wide range. Yes, you guessed it right. It’s none other than silicone oil. Some of you might not have heard of this industrially essential chemical, so we’ll take some time to understand what silicone oil is and how to use it in various Industries.

You might be focusing on the word oil more than silicone but on the macro level, this might not feel like true oil so sometimes it is also referred to as silicone fluid. These are interchangeable terms.

silicone-oil-preparation

Most commonly used silicone oils are polymers of silicone where there is oxygen on alternative positions. This linear chain is maintained in a spiral position which makes it easy for the molecule to move over each other and this gives it an oily look. Silicone oils are stable to degradation by high temperatures. The main form which exists is Poly Dimethyl siloxane. Like this polymer form, other organic groups such as phenyl, vinyl amino acid, and epoxide can also be added to siloxane groups to create polymers that have different characteristics than their counterparts or other polymers.

Structure of Silicone Oil:

Silicone oil has a backbone of silicon and oxygen which are placed in alternative positions. Silicone present on these alternating positions in the linear chain also carries two carbon groups methyl, phenyl, and other amino acid groups. Different groups bring a different kinds of characteristics and reactivity.

If we add different organic groups to these Silicone atoms, we can attain silicone oils that can be integrated into two different compounds at the same time.

What are the characteristics of Silicone Oil?

Silicone oils exhibit very stable characteristics which are described below:

Viscosity:

Different Silicone oils exhibit different viscosities, but all of these viscosities remain constant over a range of different temperatures. The viscosities of different silicone oils range from 0.7 to 2,000,000 cs.

Thermal Stability:

Silicone oils are very stable and virtually show no change until the temperature of 250°C. This particular stability is due to the chemical bonding between silicon and oxygen in the linear chain.

Low Surface Tention:

Silicone oil molecules can easily slide over each other which gives them the liberty to move smoothly and thus have a lower surface tension which is accompanied by high compressibility.

Other properties:

Silicone oils are known to have higher dielectric strength which allows them to be used in several industries. Silicone oil can also bear heavy pressure and they are also resistant to hydrolysis and oxidation.

Applications of Silicone Oil:

Silicone oil is used in many different industries and products. The most common form of silicone oil is Polydimethyl Siloxane. This is used in many products such as:

  1. Hydraulic Break Fluids
  2. Damping Fluids
  3. Dielectric fluids
  4. Heating and Cooling fluids.
  5. Paint products

Now that we have established the base knowledge about silicone oil. Let’s discuss how we can practically use it for different applications in our daily life.

How to use Silicone oil in Lubricant?

Silicone oil is commonly used as a lubricant in a variety of industrial and household applications due to its low surface tension and chemical stability. It is often used as a lubricant for high-temperature applications, as it has a high flash point and does not break down under heat exposure. Additionally, silicone oil is often used in food-grade applications due to its non-toxicity and resistance to chemical degradation. Some common uses of silicone oil as a lubricant include:

Lubricating moving parts in machinery, such as gears, bearings, and conveyor systems.

Lubricating plastic and rubber parts to prevent sticking and wear.

Lubricating door hinges, locks, and other household items.

As a release agent in the manufacturing of molded plastic parts and rubber products.

As a lubricant for medical devices, such as catheters and syringes.

Overall, silicone oil is a great lubricant that provides excellent performance in a wide range of applications, making it a popular choice for manufacturers and consumers alike.

How to use Silicone oil in textiles?

Silicone oil is a commonly used finishing agent in the textile industry. It is applied to textiles to improve the fabric’s softness, drape, and durability, as well as to resist water and stains. The following steps outline how to use silicone oil in textiles:

Preparation: Before applying silicone oil, the fabric must be cleaned and dried thoroughly. Any residue from previous treatments or finishes must be removed to ensure even application and maximum benefits from the silicone oil.

Mixing: Silicone oil is usually supplied in concentrated form, so it must be diluted with a solvent to the desired concentration for use. Mix the silicone oil and solvent in a container, following the manufacturer’s recommended proportions.

Drying and Curing: After applying the silicone oil, the fabric must be dried and cured. This process allows the solvent to evaporate and the silicone oil to bond with the fibers. The drying and curing temperature and time will depend on the type of solvent used, the concentration of the silicone oil, and the type of fabric.

Finishing: Once the fabric is dried and cured, it can be processed through a finishing machine to improve its appearance, softness, and hand. This may include heat-setting, calendaring, or other processes to enhance the fabric’s properties.

textile-silicone-oil-fabric

By following these steps, silicone oil can be successfully used to improve the performance and appearance of textiles. It is important to follow the manufacturer’s recommendations for dilution, application, and processing to ensure optimal results.

How to use Silicone oil as a defoaming agent?

Silicone oil is commonly used as a defoaming agent in various industrial processes, including the food and beverage, chemical, and pharmaceutical industries. The following steps outline how to use silicone oil as a defoaming agent:

Preparation: The first step is to prepare the system in which the defoaming agent will be used. This typically involves ensuring that the system is free from any foreign particles or impurities that may interfere with the effectiveness of the silicone oil.

Dosing: Once the system is prepared, the silicone oil must be accurately dosed into the system. The amount of silicone oil required will depend on the size and nature of the system, as well as the type and amount of foam generated. It is recommended to start with a small amount of silicone oil and gradually increase the dose until the desired effect is achieved.

Injection: The silicone oil must be injected into the system in a manner that ensures it is effectively dispersed and has maximum contact with the foam. This may involve using a specialized injector or adding silicone oil directly to the system.

Observation: After injecting the silicone oil, it is important to monitor the system for any changes in the amount of foam being generated. If the foam is not effectively reduced, additional doses of silicone oil may be required.

Maintenance: Silicone oil is a highly effective defoaming agent, but it is important to maintain the system and ensure that it continues to perform optimally. This may involve regular cleaning and maintenance, as well as monitoring for any changes in foam generation.

By following these steps, silicone oil can be effectively used as a defoaming agent in various industrial processes. It is important to carefully follow the manufacturer’s recommendations for dosing, injection, and maintenance to ensure optimal results.

How to use Silicone oil in the automobile industry?

Silicone oil is a versatile product that can be used in various ways in the automobile industry. Here are some of the most common applications:

Lubrication: Silicone oil can be used as a lubricant in automobile engines and other moving parts, where it provides long-lasting protection against friction and wear.

Engine Cleaner: Silicone oil can be used to clean engines, which helps to remove built-up grime and debris, improving engine performance and efficiency.

Engine Sealant: Silicone oil can be used to seal engine components and prevent leaks, preserving the engine’s efficiency and performance.

Car Care: Silicone oil can be used as a protectant for various automotive surfaces, including rubber, vinyl, and plastic. It provides a protective barrier against UV rays, moisture, and other environmental elements, helping to preserve the appearance and longevity of the vehicle.

Brake Fluid: Silicone oil can be used as a brake fluid in automotive braking systems, where its low compressibility and high stability provide consistent and reliable performance.

Radiator Coolant: Silicone oil can be used as a coolant in automobile radiators, where it provides efficient heat transfer and improved engine cooling.

Rubber and Plastic Conditioner: Silicone oil can be used to condition rubber and plastic parts in automobiles, helping to extend their lifespan and improve their appearance.

automobile-industry

In conclusion, silicone oil is a versatile product that can be used in various applications in the automobile industry to improve performance, efficiency, and longevity. When using silicone oil in automotive applications, it is important to choose the right grade and type of silicone oil for the specific application and to follow the manufacturer’s recommendations for use and handling.

Usage of Silicone oil in release agents:

Silicone oil is a common ingredient in release agents, which are substances used to prevent adhesion between surfaces. Here are the steps to use silicone oil as a release agent:

Clean the Surface: Clean the surface that you want to prevent adhesion, removing any dirt, grease, or oil.

Apply Silicone Oil: Apply a thin, even layer of silicone oil to the surface using a brush, roller, or spray bottle. Make sure to cover the entire surface evenly.

Wait for Drying: Allow the silicone oil to dry completely, which usually takes several minutes to an hour, depending on the thickness of the layer and the ambient conditions.

Use the Surface: Once the silicone oil is dry, you can use the surface as needed. The silicone oil will act as a barrier, preventing adhesion between the surface and any other material.

Reapply as Needed: Reapply the silicone oil as needed, especially if the surface becomes dirty or contaminated.

Silicone oil is often preferred over other release agents due to its non-toxic, non-reactive, and non-staining properties, making it safe for use on a wide range of materials, including food contact surfaces. Additionally, silicone oil does not evaporate or break down over time, providing long-lasting protection against adhesion. When using silicone oil as a release agent, it is important to choose the right grade and type of silicone oil for the specific application and to follow the manufacturer’s recommendations for use and handling.

How to use Silicone Oil for Cooking?

Silicone oil is a popular ingredient in cooking due to its non-stick properties and high heat resistance. Here are the steps to use silicone oil in cooking:

Choose the Right Type of Silicone Oil: There are different types of silicone oil available, including refined, high-oleic, and food-grade silicone oil. Choose the right type of silicone oil for your cooking needs, taking into account the temperature and type of cooking involved.

Apply Silicone Oil to Cookware: Apply a small amount of silicone oil to your cookware, such as a baking sheet or a frying pan, using a brush or a spray bottle. Make sure to cover the entire surface evenly.

Heat the Cookware: Heat the cookware to the desired temperature, allowing the silicone oil to warm up and coat the surface.

Cook Your Food: Place your food in the cookware and cook as desired, taking advantage of the non-stick properties of the silicone oil.

Clean the Cookware: After cooking, let the cookware cool down before washing it with warm soapy water. Silicone oil is resistant to heat and can withstand high temperatures, making it easy to clean and maintain.

cooking-using-silicone-spray

When using silicone oil in cooking, it is important to keep in mind that it has a neutral taste and does not affect the flavor of your food. Additionally, silicone oil is non-reactive, making it safe for use with a wide range of food products. When using silicone oil in cooking, it is important to choose the right type of silicone oil for the specific application and to follow the manufacturer’s recommendations for use and handling.

How to Use Silicone oils in acrylic paints?

The beauty of acrylic pouring increases with the number of cells being created primarily by the difference in the density of both paints. Silicone oil is the basic component in creating these cells.

automobile-industry

Let’s discuss the step-by-step process of how to create cells in an acrylic painting using silicone oil.

Identifying the right Acrylic Paint:

There are two types of acrylic paints, those which do not need additional water and therefore their viscosity can’t be changed and those which require the addition of water, and their viscosities are dependent upon the amount of water added in them.

After selecting what kind of acrylic paint, you are going to use put both these in two separate jars.

Selection of the Pouring Medium:

Pouring medium adds flow and smooth texture to the acrylic paints being used in painting. Pouring medium helps to maintain the viscosity and dilute the paints at the same time.

Add the pouring medium to both of the above-mentioned jars and then mix the pouring medium with acrylic paints separately, note that the amount of pouring medium should be slightly more than the number of acrylic paints.

Addition of Silicone Oil:

After mixing the pouring medium and paint, add 2 drops of silicone oil for 10 ml of acrylic paint and let the mixture blend by slightly moving the mixer stick.

Pouring and Heating:

You are not going to let the acrylic paints sit idle in the jar, it must be poured onto a flat surface such as a paper canvas or any other flat surface, and make sure to cover all of the space on the canvas.

After pouring the paint mixture on the surface, we should dry the paint using a heat gun. As soon as heat is applied, the cells will start to pop up in the painting and you’ll get the desired results.

Usage of Silicone Oil in Agricultural adjuvants

Silicone oil is used in agricultural sprays containing pesticides, herbicides, insecticides, and fungicides and it helps these to perform better (synergistic effect)

How does silicone oil act as a synergist to agricultural sprays?

For a chemical spray to be more effective and efficient, it needs to cover the surface of the plant better but that is not easy for these pesticides or herbicides as there is a difference in surface tensions between the plant and spray droplets.

Nearly 99% percent of the spray will not reach its target if used without adjuvants. To counter this problem, silicone oil comes into play. The maximum leaf surface can only be covered only when the surface tension problem is solved.

Higher surface tension means the spray droplets are in lesser contact with the surface of the leaf, on the other hand, lower surface tension means flatter droplets and better coverage of leaf surface area.

As silicone oil possesses lower surface tension and is chemically stable, the addition of Silicone oil will collectively lower the surface tension of agricultural sprays and increase its availability, and enhance efficiency.

 

Use of Silicone Oil in the cosmetics industry:

Silicone oil is widely used in cosmetics as a moisturizing and conditioning ingredient. Here’s how it’s used in different cosmetics products:

Moisturizers: Silicone oil is added to creams and lotions to improve their moisturizing properties. It helps to form a barrier on the skin to lock in moisture, leaving the skin feeling soft and smooth.

Hair care products: Silicone oil is commonly used in hair care products like conditioners, serums, and hair oils. It helps to detangle hair, reduce frizz, and provide a glossy, smooth finish.

Makeup products: Silicone oil is added to some makeup products, like foundation and primer, to improve their texture and spreadability. It can also help to fill in fine lines and wrinkles, making the skin appear smoother.

Sunscreens: Silicone oil can be used as a base ingredient in sunscreens. It helps to spread the sunscreen evenly and prevent it from leaving a sticky or greasy residue on the skin.

When using silicone oil in cosmetics, it is important to keep in mind the type of silicone oil used, as different types have different properties. For example, Cyclopentasiloxane is a lightweight and non-greasy silicone oil that is commonly used in skincare products, while dimethicone is a heavier silicone oil that is more commonly used in hair care products.

It is also important to be mindful of the concentration of silicone oil in the product. While a small amount can provide benefits, using too much can leave the skin feeling greasy and congested.

 

In conclusion, silicone oil is a versatile ingredient that can be used in a variety of cosmetics products to improve their moisturizing, conditioning, and soothing properties. When used in moderation, it can provide many benefits for the skin and hair.

silicone coating

Where and How Silicone can be used?

Silicone is one element that is very abundant and is top second on Earth, which is 25.8% on the earth’s surface. Most people know the function of metal silicone. Silicon semiconductor materials have boosted the development of the modern electronic industry. In addition, silicate-based inorganic silicon compounds are widely existing in nature, which is very convenient to use. Over thousands of years, people use silicone-related materials to produce cement, glass, ceramics, and other products.

Inorganic silicone compounds have been applied very early to produce products such as glass and ceramics. But organic silicone compounds do not exist in nature. It is mainly by synthesis and was synthesized around 50 years ago. Since industrialization in the 1940s, organic silicone compounds have developed rapidly.

Organic silicon, also known as silicone or siloxane, is a siloxane organic polymer cross-linked from silicon and oxygen. It has good characteristics with excellent heat resistance, cold resistance, oxidation resistance, and electrical insulation, which are not available from other general organic polymers. Among the organic silicon compounds, Poly siloxane has wide applications with its special structural characteristics.

 

Silicone materials are mainly divided into silicone oil (Dimethicone/PDMS/ Dimethyl Silicone Fluid, silicone defoamer, silicone leveling agent, polyether-modified silicone oil), silicone rubber, silicone resin, and silane coupling agent, etc. And there are various silicone material-related products. For example, Dow Corning has more than 4000 kinds of types of silicone materials.  If converted into Poly siloxane, the total global consumption of various silicone products is about 650,000 tons, which accounts for 0.65% of the global total output of different synthetic resin products. In addition, the sales amount of silicone products is as high as $6.5 billion, which accounts for 7% of the global total sales amount of different synthetic resin products.

Silicone can be widely used in the production of silicone fluid, agriculture silicone adjuvant, advanced lubricants, adhesives, dielectric oil, adhesives, paint, anti-foaming agents, gasket, seals as well as spare parts for rockets and missiles. In recent years, silicone material has been applied gradually from military or national defense to people’s daily life. Products for daily application include conductive buttons for computers, mobile phones, and electrical keyboards; contact lenses, swimming glasses, and swimming caps; nipple; silicone sealants for curtainwalls; finishing agent for high-end leather or fabric; silicone oil for shampoo. Silicone material has become a necessary part of people’s daily life. It also becomes a new chemical material with development on its rise.

 

silicone coating

With the prospects of silicone material, many developed countries put silicone materials as one of the most important new materials for the key development of the new century. Organic silicon is new material itself, meanwhile, it is also the new material foundation for the development of related industrial areas. Given the changing nature of organic silicon material and with the characteristics of small volume wide application, it is reputed as the catalyst for scientific and technological development. In the silicone industry, only a few upstream enterprises are on a large scale and most of them are small and medium-sized private enterprises engaged in the production of consumer products and additives.

Main silicone products and their applications

Silicone materials are mainly grouped into four categories: silicone oil with its secondary processing products, silicone rubber, silicone resin, and silane coupling agent. It is known as industrial MSG as silicone products have the properties of electrical insulation, corrosion resistance, radiation resistance, flame resistance, high and low-temperature resistance as well as physiological inertia. They are widely applied in building materials, electronic and electrical products, light industry, textile, plastics, rubber, machinery, transportation, medical and other industries. At present, the global annual production capacity of silicone products has reached more than 1.2 million tons. There are around 5,000 to 10,000 products, and the total market sales can reach US $7 billion.

Among the more than 10,000 kinds of silicone products can be roughly divided into three categories: raw materials, intermediates, and products. Silicone monomer refers to organic silicon polymer monomers synthesized by organic chlorosilane, such as raw materials like benzene chlorosilane, methyl chlorosilane, vinyl dichlorosilane, and some other materials.

Organic silicon intermediates refer to line-type or ring-type siloxane oligomers, such as octamethyl cyclotetra siloxane (D4), hexamethyldisilane (MM), dimethyl cyclosilane mixture (DMC), etc. Silicone products are the products produced by the polymerization reaction with add of inorganic fillers or modified additives. It mainly includes silicone rubber (high-temperature vulcanized silicone rubber and room-temperature vulcanized silicone rubber), silicone oil and its secondary processing products, silicone resin, and silane coupling agent. And through the sulfur molding process, silicone rubber can be made into conductive keys, seal gaskets, swimming caps, and many other consumer products.

Silicone monomer

Although there are many varieties of silicone products, its starting raw materials for production are limited to a few organic silicon monomers. The top amount is trimethylchlorosilane, followed by phenyl chlorosilane. In addition, trimethylchlorosilane, ethyl and propyl chlorosilane, vinyl chlorosilane, etc., are also necessary raw materials in the production of silicone products.

The production of silicon monomers is not complicated. The main raw material for silicon monomer is silicon block, methanol, and hydrogen chloride. At present, methyl hydrochloride monomer is synthesized in a boiling bed reactor. Silicon powder and chloromethane are reacted under a catalyst at a high temperature which makes a methyl hydrochloride mixture. And through efficient fractionation, the target fraction is obtained. Silicone monomers are made by hydrolysis, lysis, and condensation to get different products. With silicon monomer as the raw material and using different polymerization means and processes, different silicone products can be produced by adding various fillers and additives. The basic raw materials for the production of silicone oil, silicone rubber, silicone resin, and silane coupling agent are different kinds of organic silicon monomers. From these basic silicone monomers, thousands of organic silicon products can be produced. Organic silicon monomers mainly include methyl chlorosilane (methyl-monomer), phenyl chlorosilane (benzene-monomer), methyl vinyl chlorosilane, vinyl trichlorosilane, ethyl trichlorosilane, propyl trichlorosilane, γ-chloropropyl trichlorosilane, and fluor silane monomer. Among them, methyl chlorosilane accounts for the top amount, which is 90% of the total monomer, followed by phenyl chlorosilane.

Organo chlorosilane (methyl chlorosilane, phenyl chlorosilane, vinyl chlorosilane) is the basis of the whole silicone industry, and methyl chlorosilane is the pillar in the organic silicone industry. Most of the silicone polymers are Poly dimethyl siloxane made from trimethylchlorosilane. After adding other groups such as phenyl, vinyl, chlorophenyl, fluoroalkyl, etc., the product can meet special needs. The production process of methyl chlorosilane is very long and difficult for production technicians. This industry is technology-intensive and capital-intensive. Therefore, the basic manufacturing site of the major foreign companies is on a large scale and under centralized construction.  While the manufacturing of the downstream product is distributed as per their use and market conditions.

The key to the development of any polymer material is monomer technology development. The feature of the silicone industry is that the monomer production is concentrated, and the further process of silicone products are in different places. Therefore, the production of monomers plays an important role in the silicone industry. And the level of monomer production is a direct reflection of the development of the silicone industry. 

Silicone intermediates

Organic silicon monomers can be made into different silicone intermediates by hydrolysis (or lysis) and lysis. Silicone intermediates are the direct raw material to form silicone rubber, silicone oil, and silicone resin. Silicone intermediates include hexamethylcyclotrisiloxane(D3), octa-ethyl cyclic tetrasiloxane (D4), hexamethyldisilane (MM), dimethyl cyclosiloxane mixture (DMC), and other linear or cyclic dioxide series.

 Silicone rubber

Silicone rubber is one of the important products among silicone polymers. Among all rubber, silicone rubber can work under a wide temperature range, from -100℃~350℃. It is excellent in high and low-temperature resistance. According to its ionization mechanism, silicone rubber has three categories: organic peroxide-induced free radical crosslinking type (High temperature vulcanized silicone), condensation reaction type (Room temperature vulcanized silicone), and addition reaction type. High-temperature vulcanized silicone rubber (HTV): thermal vulcanized silicone rubber is also called high-temperature vulcanized silicone rubber. All the direct chain siloxane with molecular weight between 500,000-800,000 is grouped as high-temperature vulcanized rubber. Usually, gum can be made with octa ethyl cyclo tetrasiloxane (D4) as the main raw material and get polymerized under the catalysis of acid or alkali. Then with oxides as a crosslinking agent and combined with different additives (such as reinforcing filler, thermal stabilizer, structural control agent, etc.), it can be made into homogeneous rubber additives. Various rubber products can be vulcanized by molding, extrusion or calendaring, etc.,

Room temperature vulcanized silicone rubber (RTV) and addition reaction silicone rubber (LSR). Room temperature vulcanized silicone rubber refers to the one which uses low molecular weight active Poly Organo siloxane as the base material and can be formed with the crosslinker and catalyst at room temperature.

Addition reaction silicone rubber refers to the silicone rubber which is made under the addition reaction with the platinum compound as catalyst. It has no by-products during the reaction. Usually, it is composed by vinyl terminated polydimethylsiloxane, silicone resin, low molecular weight polymethyl hydro siloxane, a platinum catalyst, and reaction inhibitor, etc., It is also known as liquid silicone rubber or LSR. Usually, additional reactive silicone rubber is also vulcanized at room temperature (medium temperature), so it is also classified as room temperature sulfide silicone rubber. The above two of these are referred to as room-temperature vulcanized silicone rubber.

 

Room-temperature vulcanized silicone rubber has a low molecular weight (from 10,000 to 80,000), and it is a viscous liquid. As per different package forms, it can be divided into single-component RTV silicone rubber and two-component RTV silicone rubber. Single-component RTV silicone rubber mixes the raw rubber evenly with filler, crosslinker, or catalyst in anhydrous conditions. And it will react with the moisture in the atmosphere after opening. While two-component RTV silicone rubber usually puts the raw rubber and crosslinker agent or catalyst in separate packages. They will link together when mixed in a certain ratio. Its reaction is not related to moisture.

Silicone Oil or Silicone Fluid

silicone oil is a kind of Poly siloxane liquid oil with different viscosity. It is not toxic, not corrosive, has no smell, and is not easy to burn. According to the chemical structure, silicone oil can be divided into methyl silicone oil, phenyl silicone oil, ethyl silicone oil, methyl hydrogen silicone oil, methyl chlorophenyl silicone oil, methyl phenyl silicone oil, methyl ethoxy silicone oil, and methyl trifluoro propane, etc., Among them, methyl silicone oil is the top item. By changing the polymerization degree of Poly siloxane and the type of organic group, or making Poly siloxane polymerized with other organic compounds, silicone oil with different properties can be made, such as waterproofing, anti-adhesion, demolding or defoaming. Silicone oil can also be grouped into linear silicone oil and modified silicone oil.

Silicone oil has many special properties. Its features include low viscosity-temperature coefficient, antioxidant resistance, good resistance to high and low temperature, high flash point, excellent insulation, low volatility, low surface tension, no corrosion to the metal, non-toxic, etc., With these properties, silicone oil has excellent effects in different applications. Among all kinds of silicone oils, methyl silicone oil is the most widely applied and is the most important type followed by methyl phenyl silicone oil. Different functional silicone oils and modified silicone oils are mainly used for special purposes.

 

silicone potting

Silicone resin

Silicone resin is a semi-inorganic polymer with silicon-oxygen-silicon as the main chain and with silicon atoms cross-linked with organic groups. It emerged along with the silicone monomer produced by the silicone monomer. Its production is a half year ahead of silicone oil and silicone rubber.

Silicone resin has outstanding weather resistance, which is better than any other organic resin. Even under strong ultraviolet irradiation, silicone resin still has good yellowing resistance. Silicone also has superior dielectric properties. The property can remain stable in a wide range of temperatures, humidity, and frequency. In addition, it also has good oxidation resistance, irradiation resistance, smoke resistance, waterproof, mildew prevention, and other characteristics.

 

Silane coupling agent

The general formula of the silane coupling agent can be Y-R-SiX3. X and Y are two active groups with different reaction characteristics. X is easy to bind strongly with clay, glass, silica, metal, and metal oxides, while Y is easy to bind with resin and rubber in organic material. With both functional groups that can have a good reaction with organic and inorganic material, a silane coupling agent can bond organic and inorganic material together to reach satisfactory bonding. According to the number of hydrolyzed groups (X groups) connected to silicon atoms, the silane coupling agents can be divided into two groups: trifunctional and difunctional types. In recent years, the production of silane coupling agents is controlled by several giant companies. To form a monopoly, every company has named its product types, and for the same product, there are various names and types on the market. Union Carbide Corporation (UCC) is the world’s largest silane coupling agent manufacturer and has the largest number of product varieties. Silane coupling agent was first developed as a glass fiber treatment agent for glass fiber-reinforced plastics. The silane coupling agent has improved the adhesion between the glass fiber and the resin, thus the mechanical properties of the reinforced plastics are significantly improved. With the rapid development of composites, silane coupling agent also develops rapidly both in variety and output. In recent years, silane coupling agent has adopted some specific functional groups and this can improve the surface properties of materials, which get new properties such as antimildew, antistatic, anticoagulation, and physiological inert. This has become a new application for silane coupling agents. Along with the new development, silane coupling agents become an important branch of organic silicone.

Development history of silicone

All compounds containing Si-C bonds are generally called organic silicon compounds. Those that connect organic groups like oxygen, sulfur, and nitrogen to silicon atoms are also regarded as organic silicon compounds. Among them, the Poly siloxane composed of silicone oxygen bond (-Si-0-Si-) accounts for the top amount in silicone compounds. It is the most studied and widely applied type in silicone compounds, which is more than 90% of the total. Silicone material has both properties of organic materials and inorganic materials. It has many good properties such as high and low-temperature resistance, ozone resistance, electrical insulation, radiation resistance, flame retardant, water resistance, non-toxic and physiological inertia, and other excellent characteristics. The silicone material is widely applied in electrical, electronics, construction, chemical, textile, medical and other industries. The main functions of silicone include sealing, adhesion, encapsulation, lubrication, coating, lamination, surface activity, releasing, anti-foaming, crosslinking, waterproofing, penetrating, insertion and filling, etc. With the continuous development of the quantity and varieties of silicone material, it has become one of the most important materials in the new chemical material field. Many varieties of silicone are unable to be replaced by other chemicals.

 

silicone factory

Different phases of silicone chemistry

Beginning period: In 1863, French scientists Fiddle and Kraft heated silicon tetrachloride and zinc diethyl to 160℃ in a sealing tube and synthesized the first silicone compound, which is tetraethyl silane with Si-C bonds. Since then, much more tetraethyl silane derivatives have been synthesized. The forty years from 1863 to 1903 was the founding period of silicone chemistry, which was also referred to as the first phase

 

Growing period: From 1904 to 1937, there are many simple silicone compounds were synthesized. Meanwhile, some ring and linear Poly siloxane (with-Si-0-Si-bonds as the backbone). From the theoretical aspect, the synthesis of asymmetric silicon atomic compounds has been started, which created circumstances for the study of silicone photoactive isoforms. These 30 years were referred to as the growing period of silicone chemistry, which is also called the second phase.

Development period: Chemist Hyde from Corning as well as Patnode and Rojo from General Electronics realized that silicone polymer would have a good future, and they have actively improved the synthesis of silicone monomer. This helped the industrialization of silicone. In particular, Rojo invented the direct synthesis method for methyl chlorosilane in 1941. This was a revolution in the production of silicone and was a good foundation for the large-scale production of silicone compounds. In the 1940s, when some of the major countries realized industrialization, the equilibrium reaction methods of Poly organic siloxane were invented. And a complete system of industrial technologies was established. Different types of silicone oil, silicone rubber, silicone resin, and silane coupling agent with excellent performance have emerged. The development of the silicone industry was accelerated. The period from 1938 to1965 was called the third phase.

Boom period: Since 1966, further, consolidating, developing, improving, and utilizing the existing achievements, silicone was also developing in the new field. Some compounds which were impossible to make can also be synthesized. One of the groups with the fastest development is silicon —— metal bonding compounds. Especially chemical products formed by silicon and transition elements, and this has more practical value. And silicone chemistry has yielded fruitful results. So, the period from 1966 has been called the fourth phase.

 

The development of science has promoted the development of production and construction. And the production in turn has new requirements for scientific research. In many industries, thermal resistance is needed. But normal organic polymers cannot meet the demands. Natural silicate is long known but its -Si-0-Si- bond is fragile. Therefore, chemists introduced silicon atoms with an organic group, which can make them a linear structure or low-degree crosslinked polymer. Thus, the silicone material can form flexible or elastic material, and the application would be further enlarged. The study on Organo Poly siloxane also started. Chemist Hyde from Corning Glass first combined silicone and polymer chemistry and gained experience in silicone polymerization. Under his guidance, silicone resin was produced for electronic insulated glass cloth. From 1938 and 1941, Hyde and his collaborators developed many more Poly organic siloxane products. Meanwhile, Dow Chemical also started the study and production of Poly organic siloxane. In 1942, a dimethyl silicone oil and toluene silicone pilot plant was established.

In 1943, Dow combined with Corning glass and established the world-famous Dow-Corning Chemical. They built the synthetic Poly siloxane factory in Midland. And soon they developed DC4 ignition sealing material, which was applied on aerial aircraft in World War II. Then Dow Corning Chemical gradually became one of the world’s largest professional manufacturers of silicone products.

In the past 20 years, the application of silicone technology has achieved a brilliant level. Room temperature vulcanized silicone rubber and silane coupling agents got comprehensive development. Silicone polymer for biological and medical use also emerged. Now, many more silicone compounds were invented for a wide application. Many impossible things can be realized now due to the development of silicone material

 

From an annual output of 10,000 tons in 1997 to about 850,000 tons per year in 2015, methyl chlorosilane has a rapid development, which is top among all the monomers. In the future, with methyl chlorosilane production capacity increasing, the organic silicon industry will have further development in technology, with both capacity and quality getting onto a new level.

chemical plant

Chemical prices plunged in China market

The price of thermal coal has dropped from its highest price of USD312/mt on October 19 to USD166 /mt in the China market. The price is almost down by 47%, nearly half. The price drop of thermal coal also dragged down the price of coal chemicals. Meanwhile, this dropping trend also inspires the spot market The price of PVC, methanol, styrene, isobutylol, and new glutaradiol has a sharp downward trend, which makes a surprise in the market.

 

chemical plant

The price of coal chemical products has fallen sharply with the collapse of the coal price

With the Chinese government taking all measures to maintain a steady supply of coal and electricity power, the coal price has dropped accordingly. And this also becomes the key reason for the sudden price dropping in chemicals and other chemical raw materials. Epoxy resin has had a continuous sharp increase in the past months. But its price has lowered recently. The price of solid epoxy resin is USD4200/MT, which is USD300/MT lower than one week ago. With the price dropping, the downstream customers are expecting loa lower price of USD4100 or a lower price of USD3950. And this also makes the market transaction atmosphere weak.

In addition to the epoxy resin, many other chemicals such as epoxy chlorpropamide, phosphate, yellow phosphorus, and butadiene have a price decline after China’s gold nine silver ten sales season. since early November, prices began to decrease. The price has plunged more than USD1300/MT on week from USD5080 to USD3780/mt. This makes the whole chemical industry into winter beforehand. The price of DMC was USD6300/mt, down by USD1000/mt from the previous week, and the price of silicone oil (Polydimethylsiloxane) was USD6500/mt, which is 34% down from the highest point. Also, The PVC futures has fallen five times by the daily limit. With the future price continuing to weaken, it is negative for the spot market. And now the quotation of PVC in the n future market and spot market two weak spot markets was in chaos. In some regions, the price of PVC has dropped to less than 140000/MT. Under the suppression of falling futures prices, traders are selling stocks immediately.

From the current series of actions of restraining unreasonable price increases of bulk commodities, the price increase expectation of chemical raw materials in the next six months is very limited, and most products will gradually return to a reasonable range.

With the impact of the price reduction news, real order is very limited when some enterprises quote at a high price. The less transaction also dragged the market down and the expectation of transactions is weakening. Some Industry experts said that one of the reasons for the price decrease is that the newly expanded production capacity leads to an obvious supply increment. And the buyers have a strong bearish mood on the transaction with the supply and demand imbalance.

 

Chemical products

40 chemical products have a drop in price with a decrease of more than USD130/MT 

With the continuously increased ease in the recent chemical market, there are many chemicals with sudden price drops. And many of them are the products with hot increase and reach their historic highest point. This rapid change has made buyers unpredictable.

The price of liquid ammonia was USD620/MT, and there is a price drop of USD130/MT 20% less compared to early August. With the impact of enterprise maintenance and shortage of domestic goods, liquid ammonia experienced a soaring market in mid-to-late July.  But the increase didn’t last long, and the price of liquid ammonia continued to decrease. With the poor traffic situation and high inventory caused by the epidemic, together with the high output at high operating, as well as less demand, the price of liquid ammonia dropped again and again.

Previously, the price of trichloromethane had started a speeding process. The price soared to USD546/MT, and even over USD635/MT. There was a single-day increase of 8.7%, which was the highest one-day increase in the past 10 years. But with the high-temperature weather cooling down, the demand from the refrigerant market becomes weak, domestic sales and foreign trade are not as expected, and its raw material liquid chlorine price is low. With all these impacts, trichloromethane prices dropped by 16% from early August.

Since the beginning of 2021, the price of PTA cost-end crude oil and PX has been increasing, and its auxiliary material acetic acid also has had a significant increase. Till the end of July, the PTA price was more than USD800/MT and some large-scale factories even cut orders due to insufficient supply. However, with the operation of new PTA devices, the supply will increase. And now the domestic PTA price has dropped below USD710/MT. Its price has dropped by 13% compared with the beginning of August.

Due to the influence of the Shanxi flood, many urea factories in Jincheng stopped production. With the reduction of the market inventory and other multiple positive factors, the domestic urea spot market had a rise, and the loareaurea prices hit a new high. But with the end of peak agricultural season, and the industrial demand is insufficient, the market trend of urea is depressed. The price even drooped two times in one day. To ensure order volumes, the big factories have offered preferential price policies. Thus, the actual transaction price is much lower than expected, and the price decreased by USD60/MT or 12.37% from the beginning of August.

The export market of domestic MMA has expanded rapidly, and the monthly export volume has reached new highs. With more MMA export, fewer imports, and less output, the market inventory of MMA in China market has decreased sharply, and the price has exceeded USD2222/MT. But by the end of Oct., the buyers are mostly watching, and the negotiations were deadlocked. And the price is down by USD270/MT from the beginning of August with a drop of around 11%.

Iso octanol prices had soared to USD2950/MT, up by 156% from the same period last year. While due to the weakened raw material price, and the supply increase, its prices also fell slightly. The newest offer is now decreased by USD200/MT with a decrease of 6.9% from early august.

The price of ethylene glycol has rushed to USD950/MT at a new high. But due to the rapid decrease in the downstream polyester end. The market expectation is not optimistic. Along with the supply recovery, the tight market inventory situation has finished. Its current price is down by USD60/MT at around 6% from early August.

It is reported that Wanhua Chemical, BASF, Shanghai Hensmai, and Dow Chemical have all raised the price of MDI products. The supply of MDI is also tightening, and its prices have increased from June 2021, soaring from USD1900/MT to USD4500/MT. This price is almost the highest in nearly three years. But recently the MDI market atmosphere turned weak, and the price can be negotiated. The current market offer has decreased by USD200/MT around 5.64% from early August.

Ethyl acetate prices reached USD1450/MT and are highest in a decade. But the recent transaction price of the main factories has declined, and the trading atmosphere is not positive. The current price is down by USD80/MT and is around 4.91% lower compared with early August. The ethyl acetate in China market may continue to weaken in short term.

In the silicone industry, the price is decreasing continuously since early November. DMC price has dropped to USD4900/MT, which is almost half of the price from the highest point last month. With the DMC price plunging, the price of dimethicone silicone oil and 107 RTV also dropped. The newest silicone oil PDMS price is around USD6900/MT. The sudden price drop makes the procurement stop the purchase and those who bought at higher prices would have a stock loss.

In the titanium dioxide industry, with the winter coming, construction coating consumption is decreasing. And the main market price of Rutile titanium dioxide like Lemon 996 is USD 3,200/MT. Other brands have a price of USD3100 to USD3300. with the demand weakening, the price of titanium dioxide can be negotiated as per the orders.

The organic pigment price also stopped increasing and some item has a slight price drawback. The price of pigment yellow 74 has dropped from USD10.95/kg to USD10.50/kg. Products like Pigment Yellow 12 and Pigment Yellow 13 also stopped for a further increase.

A collection of the price declines of different chemical products

The price of dimethyl carbonate was USD 1370/MT, down by USD 740/MT from the previous week.

The phosphate price was USD2000/MT, down by USD690/MT from the previous week.

The liquid epoxy resin was quoted at USD5000/MT, down by USD630/mt from the previous week.

The price of propylene glycol was USD3450/MT, down by USD330/MT from the previous week.

DMF was quoted at USD2570/MT, down by USD280/MT from the previous week.

Butadiene was quoted at USD1060/MT, down by USD250/MT from the previous week.

MMA was quoted at USD1960/MT, down by USD20/MT from the previous week.

The price of natural anhydride was USD 2400/MT, down by USD 130/MT from the previous week.

Liquid chlorine price was USD200/MT, down by USD110/MT the previous week.

The caustic soda price was USD190/MT, down by USD60/MT from the previous week.

Phenol was quoted at USD1500/MT, down by USD60/MT from the previous week.

The PTA was quoted USD770/MT, down by USD56/mt from the previous week.

 

From the above data, it is not difficult to see that the recent decline in chemical products mainly focuses on the previous chemical products with a sharp increase, such as hydroxybenzene, ethylene glycol, polymerized MDI, ethyl acetate, etc. This is also in line with the previous market analysis which says that chemical products would not always be on the rising side and would come down after it reaches the peak.

chemical news

 

Why do the prices of chemical products plunge?

The sudden plunge in tin prices of chemical products, the experts say is related to the recent huge changes in the chemical industry chain. The supply and demand situation between coal and other energy terminals is quietly changing. The downstream demand is lessening, and goods transportation is blocked in some regions due to heavy snow. All the different reasons jointly lead to the diving of chemical product prices.

With the upstream raw material, coal price has halved, and the pressure on the chemical enterprises has been lessened to some degree. But the complex downstream situation still makes chemical enterprises anxious. With the end of the year getting closer and closer, the dual control policy on energy consumption is also becoming stricter. With the power limit, the order of downstream industries such as coating, plastics, clothing and textile, foreign trade processing industry, and other industries are suppressed. So, the transaction atmosphere in the market is not positive.

With the accumulation of inventory, the price has a trend of moving downward. With the temperature drop in the fourth quarter, the production and sales of many industries have entered into the off-season, and they have resistance to the high cost of upstream raw materials. At the same time, with the mentality of buying at the use and not buying at decreasing, the purchase is very limited and a shrinkage in the transaction is very obvious. With downstream customers continuing to negotiate for discount prices, the market transaction is at a dead block. With the transaction pressure and pessimistic views on the market, some chemical enterprises have prices continuously.

Some chemical enterprises said that for the last two months of 2021, the focus is no longer on securing more orders but to maintain a stable capital chain. With the uncertain industry situation, chemical enterprises choose to stabilize the old customers. For the new customers, they will only receive cash orders. They may also limit production and sales to avoid risks and maintain a stable capital chain to the greatest extent. Prices are no longer the key at the present. How to ensure to pass the winter safely and continue to spend in 2022 is the key.