Silicone-oil-factory

How is Silicone Oil Manufactured? A detailed Overview.

You might have heard the phrase “We are living in a plastic world” because plastic is everywhere, incorporated into almost every aspect of our lives. Here at Hengyi Tek, we have our phrase “We are living in a silicone world”, silicone has been an integral part of our daily chores such as using silicone chips in our computers and automotive vehicles. Silicone has an excellent reputation for its existence in various physical forms which gives it a headstart over its counterparts. Silicone exists in the solid state as the general public knows it. Silicone also exists in the gel-like material such as in silicone implants. The last known physical state of silicone to a common is liquid silicone which is often termed silicone oil or silicone fluid. Although it is not commonly known that silicone also exists in liquid form, the uses of silicone oil or silicone fluid are very crucial and are used in several industries.

You might be pondering about the manufacturing process of silicone oil, but before that, it is a must that we talk briefly about the uses of silicone oil and its properties. Silicone-oil-factory

 Let’s discuss the later part first, the properties of silicone oil:

Properties:

The linear structure of silicone fluids (polydimethylsiloxanes) is primarily responsible for all the beneficial properties exhibited by them.

High Molecular Weight:

It is one of the very few materials which maintains a liquid consistency at such high molecular weight making it useful.

Stable Viscosity-Temperature profile:

High molecular weight and the linear structure helps silicone oil maintain a constant or minor change in viscosity over a wide range of temperatures. This is one of the most important properties which makes it the best for various uses.

Thermal and Oxidative Stability:

Silicone oil is semi-inorganic which makes it somewhat resistant to thermal degradation and oxidative degradation. While organic fluids are particularly prone to both kinds of degradations.

Doesn’t absorb UV and X-Rays:

Silicone oil is also used in the medical and healthcare industry so this property of inability to absorb UV and X-rays comes in handy while being used in medical settings.

Low Surface Tension:

This property is of particular importance for its use in various industries.

Low Vapor Pressure.

Low Volatility.

High Flash and Ignition Point.

High Specific Resistance.

Water Insolubility.

Dielectric Properties.

Now that we have discussed the properties briefly, let’s move on to discuss the uses of silicone oil in brief:

Uses of Silicone fluid: 

The properties mentioned above provide silicone fluids with the liberty of usage in several industries. Silicone fluids are used as lubricants and release agents in their pure forms. The use of silicone oils as lubricants has been around for a while, especially in hydraulic aircraft engines. The food industry owes a bundle of thanks to silicone fluids as it is used as releasing agent in cooking sprays and for baking purposes. The textile industry has also seen a major boom in the use of silicone fluids for smooth touching in fabrics. The paint industry is also one of those reaping benefits from this magical fluid.

How to Manufacture Silicone oil?

Before diving into the exact process of how silicone fluids are made. We must develop an understanding of the structure of silicone and its various compounds. Commonly used Silicones are polymeric compounds of silicone having a silicone-oxygen chain with both of these at alternating positions (Si-O-Si), this alternating chain of silicon and oxygen atoms makes up the backbone of Silicone compounds.

Silicone-oil-in-glass-jar

Depending upon the extent to which a silicone compound can bear functional groups, they can be classified as monofunctional, difunctional, trifunctional, and tetrafunctional. The structural formulas for all of them are given below:

Monofunctional Silicone Compounds:

They are also known as end groups. The degree of Polycondensation and viscosity of the polymer depends upon the monofunctional group present in organo-poly siloxane which limits the chain length affecting these parameters.

Molecular Formula:                              R3SiO1/2

Starting Silane:                                     R3SiCl

Difunctional Silicone Compounds:

Difunctional functional groups tend to have a higher degree of molecular chains.

Molecular Formula:                                  R2SiO2/2 

Starting Silane:                                         R2SiCl

Trifunctional Silicone Compounds:

These often tend to produce 3-D structures which are cross-linked.

Molecular Formula:                                  RSiO3/2 

Starting Silane:                                         RSiCl

Tetrafunctional (Quaternary) Silicone Compounds:

Molecular Formula:                                  SiO4/2 

Starting Silane:                                         SiCl

Mono and difunctional silicone compounds are the primary components for linear chain silicone oils, so our discussion will be limited to these two.

Another categorization of organosilanes is based on the type of substituent (R) present in the structure of the silicone oil.

Dimethyl Siloxane: 

When methyl (CH3) is present as a substituent on two positions in a linear chain of siloxane, it is called dimethyl siloxane or dimethyl silicone oil. The majority of organosilanes have dimethyl silicone in their structure. Trimethylsilyl-terminated dimethylpolysiloxane is also a major contributor to organosilanes.

Some other types of methyl silane are considered important such as

Methylhydrogensiloxanes:

This type of silicone has hydrogen in place of one of the methyl groups present on the difunctional unit.

Phenymethylsilicone Fluids:

The methyl group present in the backbone of dimethyl silicone is replaced by phenyl groups. They tend to show somewhat different extents of properties

Different properties can be achieved by changing the proportion of phenyl to methyl groups present on the backbone of silicone oil structures.

There are a lot of modifications that can be incorporated into the alternating silicone oil backbone and there is a significant number of silicone oils that are produced each year.

Glycolfunctional Siloxanes are another modified silicone that is water soluble, their silicone backbone contains glycol chains consisting of ethylene oxide or polyepoxide.

The use of silicone oils in the aqueous environment depends upon what kind of bonding they have for silicone with adjacent atoms. Bonds can be formed between silicone, oxygen, and carbon such as Si-O-C, these types of bonds are subjected to hydrolysis, also the bonds can be formed between silicone and carbon such as Si-C, the best property exhibited by this type of linkage is that they are unsaponifiable.

The procedure for the production of Silicon Fluids/Silicone Oil: 

We have already stated that our focus in this article will be the production method or manufacturing method of dimethyl silicone oil as it is one of the basic and most important forms. 

There are a few basic reactions that take place in the production of dimethyl silicone fluids, these reactions are considered to be of fundamental importance in all organo-silicone compound chemistry.

Silicone-oil-manufacturing

Before going into details of all these fundamental reactions, let’s list them all:

‌Müller-Rochow Synthesis

‌Hydrolysis, Methanolysis, Condensation

‌Polymerization Reaction

‌Equilibration Reaction

Transesterification Reaction

Hydrosilylation Reaction

Direct Synthesis Reaction

Now Let’s discuss all of them in a little detail:

‌Müller-Rochow Synthesis

Methylchlorosilanes are produced with the help of this reaction. These are cheaper to produce in terms of finances. Silicone and methyl chloride (in gaseous form) are primarily required for the reaction. A high temperature of 260-320°C is required with the presence of copper as a catalyst. Reactions take place in a gas/solid state. The equation of the above-said reaction is shown below, and it leads to the production of dimethyldichlorosilane as follows:

Si + 2CH3CI → (CH3)2SiCl2

‌Hydrolysis,methanolysis, and Condensation.

These three steps take place after the synthesis of organocholosilanes. Hydrolysis and methanolysis generally take place before condensation; both have organocholosilanes as their targets. After hydrolysis and methanolysis, the next step is condensation which leads to silane production. During these three processes, the acid chloride of silicic acid reacts with water and methanol. Details of the reaction are given below in the following:

(CH3)2SiCI2+ 2H2O→(CH3)2Si (OH)2 +2HCI 

n(CH3)2Si(OH)2→HO一[(CH3)2SiO]n一H + (n1) H2O

nSi + 2nCH3OH →rnHO一[(CH3)2SiOH]x一 f (n一rn)H2

The above reaction depicts the condensation of dimethyl dichlorosilanes after hydrolysis had already taken place. During this reaction, the elimination of water from silanol groups results in the production of high molecular siloxanes. The biggest drawback of hydrolysis reaction is that it results in a considerable amount of HCL gas production which leads to pollution. Methanolysis, on the other hand, is pollution free in this regard and fact more economical because the chlorine produced can be reused in the production of methyl chloride. 

Polymerization Reaction:

Out of many ways to produce silicone oils, one is called the polymerization reaction. As the name suggests, polymerization reactions result in the production of high molecular linear polysiloxanes from those siloxane rings which are free from hydroxyl groups.

Equilibration Reaction:

It is one of the mega players in the production of silicone fluids. The main goal of the reaction is to homogenize the siloxane mixtures which have a different molecular weight. This reaction is catalyzed in such a way that the final siloxane mixture is a gaussian molecular weight mixture. Silicone fluids with desired viscosity can be drawn out using an equilibration reaction and also stable uniform distribution can be achieved using this reaction.

Direct Synthesis Reactions:

In this type of synthesis, the reactants are either silicone or SiH containing silanes and chlorobenzene. After silicone and chlorobenzene react to produce phenylchlorosilanes which are repeatedly hydrolyzed to produce silicone oil.

Hydrosilylation reaction: 

It is a catalytic reaction in which noble metals act as a catalyst and they add ω-terminated olefinic molecules to SiH silanes.

Transesterification Reaction: 

Alkosilyl groups are transesterified by a silanol group-containing siloxanes which yield silicone oil.

Insertion Reactions are also one way to produce silicone oil.

All these processes can be used to produce silicone oil. Some of them are more economical and more frequently used but that is not our concern for today.

optical brightener white t-shirt

Optical Brighteners (OB): Everything You Need to Know

Optical brighteners are fascinating chemicals because they absorb light in the ultraviolet and violet spectra (340 nm–370 nm), which lie in the electromagnetic spectrum. After absorbing, they emit this light into a different region (blue, 420–470 nm) while displaying the phenomenon of fluorescence.

The bluish haze added by optical brightening agents removes the yellowish feel from substances and gives them a fresh look.

Alternatively, optical brighteners are known as:

Optical Brightening Agents (OBAs)

Fluorescent Brightening Agents (FBAs)

Fluorescent Whitening Agents (FWAs)

Their primary function or effect is that they give a whitish and bright appearance to several products to which they are frequently added. A detailed discussion about the applications and uses of optical brighteners is provided later in this blog post.

optical brightener white t-shirt

 

Before going into further details of applications, let’s dive into the properties and types of optical brighteners:

Types of OB:

Optical brighteners (OB) can be classified into different categories depending on the number of sulfonic groups in the structure.

The following are different categories of optical brighteners:

Disulfonated optical brighteners.

Tetrasulfonated optical Brighteners

Hexasulfonated optical brighteners.

Now let’s discuss each of them a bit more in detail:

Di-sulfonated Optical brighteners:

As is visible from the suffix “Di,” this type of OB consists of two sulfonic groups. They show resistance to water and are very unlikely to show solubility in other solvents. They have a degree of affinity for cellulose; therefore, they are used in wet-end addition.

Tetra-sulfonated Optical Brighteners:

Tetrasulfonated OBs are those that contain four sulphonic groups. They are comparatively less hydrophobic, show better solubility, and have a medium range of affinity. Because of their medium affinity, they can be used in both dry and wet end additions. The paper industry is where they have found themselves most useful.

Hexa-sulfonated Optical brighteners:

Hexa stands for six, so it’s pretty obvious that they contain six sulfonic groups. Because a greater number of sulfonic groups corresponds to greater solubility, hexasulfonated optical brighteners have high solubility. For the same reason, they are only used in dry-end addition techniques. Their primary use is due to the extreme brightness they bring to different substances.

Properties of Optical Brighteners:

Optical brighteners bring a lot of beneficial properties to the table; let’s get deep into them.

Brightness and Whiteness:

When the white textile fabric is produced in the factories, observers are called to check the whiteness of the fabric, and white textile that is freshly made often gives off a yellowish haze, which often dampens the look and aesthetics of the fabric. Adding a bluer tint to the fabric makes it look whiter. If you grew up in the 1990s, you probably remember seeing blue laundry detergents used in the washing process to give it a brighter tint.

As explained at the start, optical brighteners emit blue light, and when this property is added to the textile, they give it a brighter look and get rid of the yellowish feel. Having a greater affinity for cellulose, they become excellent for use in cellulose-containing fabrics.

The brightness of OB can be boosted by the addition of “polyols,” primarily due to an increase in the emission of blue light. On the other hand, excess brightness should also be avoided because it may add a greenish haze, which is not desirable.

Lightfastness:

This is a property of any colour-producing material that indicates how resistant it is to fading when exposed to light. OBs introduce a significant amount of lightfastness when added to the cellulose-containing fabric. On the other hand, when added to fabrics like Xylon, their light fastness increases more than that of cellulose, and in the case of polyester, there is an even higher rating of light fastness being added by OBs.

Washing fastness:

It is the property of the colour dyed on fabric; it is the measure of how resistant a dyed colour is to the effects of the washing process. The washing fastness added by OBs is in the medium range, and it might degrade with time, particularly in the case of cellulose textiles. In the case of other textile materials, the washing fastness of OBs may last for the life of the textile material.

Optical Brighteners’ Applications:

Let’s briefly discuss the uses of OBs:

Laundry detergents with optical brighteners:

Laundry detergents have some quantity of optical brighteners added in to brighten the washed clothes, and this has vastly replaced the blue dye that was added to white fabrics while washing previously.

OB in the Paper Industry:

Optical brighteners are often used in the paper industry for increased brightness, which often gives a better background for writing. On the other side of the coin, banknotes do not use such fluorescent agents, and therefore this characteristic can be used to check for fake banknotes.

white paper brightened by optical brightener

Optical Brighteners in the Cosmetic Industry:

The same feature of adding brightness can make eye powders and face powders favourable products in which optical brighteners can be used. They are also used to treat blonde hair for conditioning purposes and add luminance to it by using optical brighteners.

optical brightener added in face powder

question mark

Most Frequently Asked Questions about Dimethyl Silicone.

Silicone has been the most popular chemical in recent times, whether it is in the form of silicone implants or silicone gels. With COVID’s exponential growth in e-commerce marketplaces, silicone products were always trending on various social media platforms. The upward trajectory of the popularity of silicone products has been around for almost two decades. Most people have only known silicone as a thick, viscous gel-like material or as the primary hard material used in various chips around the world. Although silicone chips have played a massive role in the tech revolution, there are many other silently incorporated roles for silicone in many of the fast-moving consumer goods we use daily. Most of these lesser-known facts about the use of silicone come from the fact that silicone is also available in liquid form, which is often referred to as silicone oil or silicone fluid. Silicone fluid comes in a variety of polymerized forms, and probably the most famous one is dimethyl silicone.

question mark

Whenever a question comes to mind, people often go find the answer on the internet. We have noticed that not a lot of information is present on a single page where you can find all the answers. Here we’ll try to answer most of the questions being asked frequently.

What is dimethyl silicone?

Dimethyl silicone, also known as silicone oil, is a tasteless, odorless, and colorless chemical that appears to the naked eye to be water, even though it is not soluble in water. It is soluble in many organic compounds such as benzene, toluene, ether, chloroform, ether, and many others. Various steps are involved in the production of dimethyl silicone, such as:

  • Hydrolysis
  • Neutralization
  • Cracking
  • Fractionation

Dimethyl silicone has found its application in a lot of industries, such as the cosmetics industry, paint industry, food industry, car polishing industry, and many more. Dimethyl silicone is much more incorporated into our lives through multiple products than ever before.

Can you eat dimethyl silicone?

Do you want to eat dimethyl silicone? I bet you can’t because it is a liquid in the first place and can be drunk, but it has no taste, which makes it highly unlikeable to be drunk. But don’t assume that it can’t be used in the food industry. Dimethyl silicone is a key ingredient in cooking sprays, where it provides non-stick properties and also acts as a good anti-foaming agent. It is also used as an additive. The only care needed with dimethyl silicone while using it in food processing is avoiding its direct contact with fire as it is flammable, so always use it with care and in smaller quantities.

a man eating

Where can I buy dimethyl silicone?

Dimethyl silicone is not rare to find. It can be bought online at several e-commerce marketplaces, but that quantity might only be for small businesses or individual users. For large-scale purchases, contacting manufacturers around the world might be the best way to get your hands on some high-quality, low-priced dimethyl silicone. The majority of silicone fluid manufacturers are located in China. Often, these manufacturers tend to have websites where you can find contact details such as a phone number, email, or LinkedIn page. The other way to go about looking for dimethyl silicone oil is by using websites like Alibaba or Made in China, where you can browse through a lot of vendors selling silicone oil. However, one of the most vexing aspects of weeding out these vendors is that sometimes middlemen enter the picture, resulting in a higher price. Hengyi Technology provides a solution to all these problems with the association of several dimethyl silicone oil manufacturers. You just need to tell the company the quantity and type of silicone fluid required, and Hengyi will provide you with the best quote for your desired amount.

 

Is dimethyl silicone toxic?

It is a non-toxic substance, and in fact, it is very useful in the food industry. It is marked as a safe food additive, and its use in cooking sprays is just increasing day by day. Okay, that’s about toxicity for humans. Is it toxic for plants? Although it is used as an adjuvant with many herbicides and pesticides, when used alone on plants, it is not a toxic substance and doesn’t cause retardation in the growth of plants or even pests. However, drinking silicone oil should be avoided, as it can cause low-grade irritation. It should also not come into contact with the naked eye.

 

toxic mask

Can dimethyl silicone cause cancer?

Dimethyl silicone being used in the food industry signals its safety for human consumption in low amounts. Although rumors of its safety kept circulating as “health hazardous” or “cancerous,” there is no scientific proof to support this gossip. To be safe, the World Health Organization recommends no more than 43 g of cooking spray containing dimethyl silicone per 40 kg of body weight per day.

 

cancer surviving kid

Is silicone oil good for hair?

Silicone is used in several hair products, and it creates a water-repellent layer around your hair that keeps it hydrated over time. It is not dangerous, but long-term use may cause hair to dry out and lose strength. Silicone buildups in the hair are hard to remove, and they generally go away in 7 to 8 washes. There are many specific silicone-free shampoos available on the market, but silicone is still used by a lot of shampoo and haircare product manufacturers.

 

hair

Can silicone oil stay in the eye forever?

Before going into the discussion about whether silicone oil can stay in the eye forever or not, it is important to know why silicone oil is injected into the eye. Silicone oil is injected into the eye to replace vitreous humor (a gel-like substance), which is generally lost when there is retinal detachment of the eye. The inclusion of silicone oil in the eye prevents the aqueous humor from reaching the retina. After the vitreous humor heals itself, silicone oil is often removed from the eye, or else it will lead to an increase in intraocular pressure. Silicone oil typically lasts 3–4 months before being surgically removed after complete recovery.

 

eye

Why is silicone used instead of oil in acrylic pouring?

Acrylic pouring is a type of abstract art in which acrylic paint is poured into each other. The most prominent feature of acrylic pouring is the creation of cells. There are many ways to achieve it, and one way is through the addition of silicone oil to acrylic paints. Only a few drops of silicone oil are needed to create cells when pouring acrylic.

 

acrylic pouring dimethyl silicone cells

rice-crop-growing

Silicone Adjuvants in Agriculture as Herbicides. What else?

Silicone adjuvants are used frequently in agriculture for increasing the effects of agricultural herbicides and pesticides. Before going deep into the discussion, let’s understand first what adjuvants are. They can be simply explained as support chemicals that can be added to herbicides, pesticides, and insecticides to increase their effectiveness and also add several beneficial characteristics.

rice-crop-growing

 

Agricultural adjuvants are primarily used as an herbicide but their use as insecticides, fungicides, acaricides, and plant growth regulators are also being established.

It’s time to dive further into details of how Silicone Agricultural Adjuvant can be used in different modes:

Silicone Adjuvants for Herbicides:

When these adjuvants are added to the herbicides, they either improve or sometimes lower the potential of the herbicides depending upon the nature of the adjuvant it is being added in. Enhancing the effect of herbicides by adding adjuvants seems pretty straightforward forward but why we would want the adjuvant to decrease the effects of herbicides? Sometimes, the herbicide might be needed to eradicate the growing herbs in crops, and using the herbicide at its full capacity might prove harmful to the crop itself and that is where adjuvants come into play to save the crop while killing the herbs at the same time.

 

Roles of different types of Silicone Adjuvants along with Herbicides:

Activator Adjuvants:

As the name suggests, these types of silicone adjuvants increase the activity of herbicides by enhancing the following characteristics:

  • Increased absorption into the plant surface.
  • Decreased photodegradation of herbicides leads to increased time of activity of herbicides or increased life of herbicidal action.
  • Changes the physical properties of herbicides.

Plants have a thick outer surface known as a cuticle which must be penetrated by herbicides to be effective. The cuticle is made up of wax which is water-repellent in nature and cutin and pectin which are somewhat less repellent to water. Wax is the major factor that limits the absorption of herbicides as the hydrocarbons are the primary component in the wax. The amount of wax and type of wax changes across different species which makes it a bit tricky in choosing the right adjuvant which can help herbicide cross the cuticle easily. 

Surfactant:

Surfactants can be anionic, cationic, nonionic, and organosilicon. They are used after herbicides. The main function of surfactants is to decrease the surface tension between spray droplets of herbicide and plant surface.

man-spraying-a-crop

Nonionic surfactants can be used in combination with a lot of pesticides because it carries no electrical charge. While anionic surfactants carry a negatively charged functional group. Anionic surfactants are more specific and are only compatible with some specific herbicides. Only one cationic surfactant (ethoxylated fatty amines) is commonly used with herbicides. Organosilicon is a relatively newly introduced group of surfactants, and they are replacing the old non-ionic surfactants because of lower surface tension, better rain fastness, and other improved properties than those of non-ionic surfactants.

Silicone Adjuvants for Insecticides and Acaricides:

Silicone surfactants are not very reactive, but their capability to penetrate insects is mainly because the outer layer of insects is somewhat similar to that of plants. Silicone surfactant penetrates the insect’s stroma due to decreased surface tension.

 

Silicone Adjuvants for Fungicides:

Silicone adjuvants used in fungicides are not very much known and there is limited knowledge available. Fungicides are not required to be absorbed into the leaf surface for effectiveness. Instead, they tend to perform better when they stay on the surface of the plant to keep them protected from fungus. 

Contrary to the protective fungus, the systemic fungus is required to be absorbed to perform its function. Silicone adjuvants may prove helpful in the cause of system fungicides. 

Silicone Adjuvants for Plant Growth Regulators:

The use of silicone-based adjuvants such as siloxane polymers has proven to show an increased effect on plant growth regulators and this action is due to increased uptake of plant growth regulators. An example of a silicone adjuvant in plant growth regulators is the use of silicone adjuvant with manganese salt and phosphate which is applied to wheat crops, and it tends to give more outcomes than any other surfactant used.

 

agricultural silicone adjuvants

To sum up the discussion, silicone adjuvants play a vital role in increasing the outcome of crops and reducing the potential damage or harm which can be inflicted by herbs, pests, fungi, and other factors.

Hengyi Technology provides a variety of agricultural silicone adjuvants to be used by manufacturers around the world.

Where to buy silicone oil

Silicone Oil uses in different Product and Industries

Silicone is one of the most commonly used chemical ingredients known to human beings and the users are as young as newborns who drink milk from silicone-made feeder nipples to all the adults who consume silicone through various products used in day-to-day life tasks. Silicone has found its way into most aspects of life like technology, medical science, cosmetics, electronics, etc. But the question is how this material is found in so many things around us although two things containing silicone might not look like each other at all. The answers lie in silicone’s ability to exist in many physical forms e.g., Silicone oil, Silicone grease, Silicone rubber, Silicone resin, Silicone caulk, etc.

Silicone oil is probably one of the most fascinating chemicals we have today and all the buzz around the benefits of silicone oil is real.

Silicone oil uses

Let’s have a closer look here to understand more about silicone oil and see how we can get more out of it:

WHAT IS SILICONE OIL?

They can be defined as a linear chain of Poly siloxane that contains silicone and oxygen at alternating positions. Silicone atom in the linear chain has two spots where they can bind with carbon groups like methyl is bounded. Several polymers can be made out of it like Polydimethylsiloxane. Polymers can affect the degree of physical and chemical properties offered by silicone oils.

It is a colorless, tasteless, and odorless substance that can be found in a liquid or semi-solid state depending on the degree of polymerization. It also possesses a large compression ratio which gives it higher thermodynamic efficiency making it excellent for use as a hydraulic fluid in various machines. The viscosity-temperature coefficient of silicone is low (Viscosity and temperature are intervened. Viscosity is an important factor as low viscosity of lubricants means lower consumption of fuel. Generally, in petroleum oils, the viscosity is much more dependent on temperature, and at higher temperatures viscosity increases making fuel consumption greater than consumption at lower temperatures. Still, silicone oils show a little change in their viscosity with an increase in temperature) which makes them an excellent lubricant. Silicone oil has a much lower surface tension which helps it spread over the surface more easily and this property justifies its use in various cosmetic products where lower surface tension is important for the best and even results. This property of lower surface tension has also paved the path for silicone oil to be used as a defoamer and release agent. Heat resistance is another property that stands strong in favor of silicone to be used in multiple high-temperature open and closed systems. Temperatures even as high as 250°C do not affect silicone oil at all.

For this degree of heat resistance, it is used in lab research apparatus. While being heat resistant, silicone fluid interestingly is also an excellent low-temperature resistant substance. Dimethyl silicone oil can bear temperatures as low as -50°C and Methylphenyl silicone oil can remain fluid even at -65°C. Maybe this is the reason for use of silicone oil refrigerants used in refrigerators. These low-temperature-resistant properties make them excellent for use in some of the coldest regions around the world. Low thermal conductivity is another key feature of silicone oil as its thermal conductivity is as low as 25% compared to that of water. Low thermal conductivity means silicone oil can be used as heat transfer material or as an insulation material with better energy-efficient performance. Moreover, as we discussed earlier that viscosity and temperature are related, a general increase in viscosity means an increase in thermal conductivity, but in the case of silicone oil the thermal conductivity becomes constant above a viscosity of 100 mm2/s. Recently, the water-repellent characteristic of silicone fluid has found its way into the textile and coating industry. The ceramics industry, glass, and fiber production industries are the ones benefiting from this technology. Silicone oil offers high resistance to heavy stress applied to it, this is a feature that mineral oil doesn’t exhibit and often their oil molecules deform under sheer stress also there is a visible change in viscosity. Those silicone oils have a viscosity lower than 1000 mm2/s; stress doesn’t change their viscosity too much. But larger viscosity silicone oils might see a visible change in viscosity on the application of stress which is reversible because the oil molecules are not deformed unlike mineral oils and thus regain their original viscosity when the stress applied to them is removed. This feature makes silicone oil the ultimate king in the game as outperforms petroleum-based oils by 20 times. Although multiple properties of silicone oil make it a perfect lubricant, such as constant viscosity, heat resistance, and low-temperature resistance, it has poor lubrication where there is steel-to-steel friction. This feature doesn’t limit the use of silicone lubricant in steel-aluminum or steel-bronze parts of different machinery. Phenyl polymers of silicone oil have shown more resistance to radiations than other polymers and more phenyl groups added to the chain add more resistance to radiations. For the same reason, methyl phenyl silicone oil is more resistant to radiation than conventional dimethyl silicone oil. Thanks to its radiation-resistant properties, methyl phenyl silicone oil is used in the high-temperature parts of radiation equipment. Just like its viscosity, the electrical properties of silicone fluid are also constant over a wide variety of electrical frequencies and temperatures. Dielectric breakdown is often an issue encountered with the use of mineral oil products, but silicone oil is much better at handling dielectric breakdown. All the insulating oils absorb moisture which can affect the electrical insulation properties of these oils, silicone oil is no exception here so extra care is needed when using it as an insulation fluid and dehydration of silicone oil is necessary before applying electrical stress.

As of now, we have discussed all the important characteristics of silicone oil and a little overview of the uses of this magnificent fluid, it’s time for a deep discussion about how silicone oil is incorporated into our life.

IS SILICONE OIL SAFE FOR HUMANS?

As we know, Silicone oil is tasteless and colorless.

Does that mean it can be a perfect homicidal substance? Fortunately, it is not because it is not known to be a toxic substance. It is one of the beneficial chemical entities for the human body as it has found its way into various medical procedures. Also, silicone oil is used in a lot of cosmetic products which are applied directly on the skin, so silicone is also known to be beneficial for the skin. Certain drugs also include silicone oil as a basic component or as a vital ingredient for their desirous actions.

A detailed discussion of the medical uses of silicone fluid is given below in one of the paragraphs.

 

DIFFERENT TYPES OF SILICONE OILS

Silicone oil is a broad term, and several different types of silicone oil are derived by the polymerization of different groups at the silicone molecule.

  • Polymethyl hydrogen siloxane

Polymethyl hydrogen siloxane oil has found its application in waterproofing and anti-sticking treatment procedures as it is a colorless and odorless oil. It is also used for increasing the durability of certain materials by crosslinking and it also extends the liquid silicone rubber chain. The addition of an epoxy group to polymethyl hydrogen siloxane oil can fairly improve its absorption, reactivity, and coupling properties. Polymethyl hydrogen siloxane oil is used for the treatment of dry-surfaced materials such as fire extinguishing powder to make it more free-flowing and avoid clogging. Sometimes polymethyl hydrogen siloxane oil is used to create a waterproof film over metal surfaces.

  • Amino silicone oil

The introduction of an amino group at one of the methyls in the Poly siloxane chain produces amino silicone oils which are popular in the textile industry. The application of amino silicone oils in textile gives the following properties to the product:

  • Abrasion resistance
  • Elastic feeling
  • Soft Touch feeling
  • Excellent wrinkle recovery
  • Increased durability

Amino Silicone oil can also be used in hair care products such as shampoos. It is highly inflammable so it must be kept away from fire. Amino silicone oil is also used in the textile industry for giving a perfect finish to clothing material. Additionally, they are also being used for manufacturing, silicone emulsions, and also as smoothening agents.

  • Phenyl methyl silicone oil

Phenyl methyl silicone possesses properties like good insulation, high-temperature resistance and low-temperature resistance, and anti-ozone with small surface tension making it very useful in a lot of products.

It is further divided into three groups depending upon the ratio of phenyl groups present and all of them have different applications.

Low Phenyl methyl silicone oil can be used for instruments that often face very low temperatures.

Medium phenyl methyl silicone oil and high phenyl methyl silicone oil are more resistant to higher temperatures and radiations and thus they are used as lubricants.

  • Vinyl silicone oil

Vinyl silicone oil is known to be an intermediate material because it has methyl silicone-like properties which make it suitable for the smoothness and limpness of clothes. Vinyl silicone oil has better solubility with organic material as compared to that methyl silicone oil because of the double bond present in vinyl silicone oil.

Owing to this reactivity, let’s discuss some of the applications of vinyl silicone oil:

  1. It is one of the main ingredients in the manufacturing of liquid silicone rubber. It increases the strength and durability of silicone rubber.
  2. When allowed to react with organic materials, it produces a substance that has better properties than its conventional counterparts.
  • Hydroxy silicone oil

Hydroxy-terminated polydimethylsiloxane is a highly active silicone of medium and high-density hydroxy end-blocked Silicone polymer.

As the processing aid for silicone rubber can ameliorate the silicone rubber’s processing performance used as a silicone rubber structure regulator, as a fabric finishing agent, can significantly reduce the polyester thread’s smoothness, sewing capacity, high-temperature resistance, and antistatic performance.

It can make the fabric soft, smooth and elastic, and also give fabric, paper, and leather leakproof, water- and performance. Hydroxy silicone oil is used in hair products for beneficial effects like gloss, shine, and fluffiness. Hydroxy silicone oil has also been used in coating and pigments for providing characteristics such as defoaming effects, anti-convection, and anti-skinning effects.

 

As we have gone through different types of silicone oil, let’s have a closer look at how silicone oil is used in other products:

 1. SILICONE OIL AS PAINT ADDITIVE

Silicone oil/silicone fluid is often used as an additive in paints due to numerous characteristics which are displayed by silicone fluids such as lower surface tension. This property when impacted into paints by silicone oil makes the paint very even on the surface upon which it is being applied. The addition of silicone fluid in paints prevents several film flaws which are common without silicone additives.

silicone oil for paints industry

The following are some features imparted by silicone additives in paints:

  • Reduced Friction

Paint films have significantly higher friction coefficients, but the addition of silicone oil significantly reduces this friction and gives a smooth touch when applied.

  • Increased Durability

The addition of dimethyl silicone oil into paints leads to improvement in the durability of the paint and this particular feature arises due reaction of the methyl group with paint resins. The longer the paint survives on the surface, the better it is for the consumer, so silicone oils bring great value to the paint industry in terms of creating a strong reputation.

  • Water Repellent

As we discussed earlier silicone oil is water-repellent, the same effect is imparted to paints when silicone oil is added to them. Water-repellent property is of ultimate importance for paints, as these paints can be used in aqueous environments such as paints for boats and submarine, also these paints are of utmost importance in tropical areas because they have a more significant amount of moisture in the air than other areas and frequents rains make it water-repellent paints a better choice in saving the metals surfaces and nowadays these paints are used on walls, especially by those having kids.

  • Resistance to Salty Water

Functional groups in silicone oil react with metals and inorganic materials while being a constituent of paint and provide better resistance to salty water and better metal sticking properties. Owing to this resistance to salty water conditions, Paints with silicone oil as an additive are therefore useful on boats, submarines, marine oil drilling equipment, and all other metal structures which are bound to come in contact with marine water for a longer period.

  • Defoaming Effect

Silicone fluids when added to the paint prevent the foam-forming tendency of paints. Certain properties of silicone fluid are particularly important in imparting defoaming characteristics to the paint. These properties include insolubility in water, low chemical reactiveness or high chemical inertness, low surface tension, and high thermal stability. All of these are of sheer importance in defoaming effect. Note that pure silicone oils have relatively lower defoaming abilities than their synthetic derivatives.

  • Reduce the Convection effect

Silicone oil fairly reduces the convection effect when the paint is drying up. The same features help the paints to give a hammer tone finish to the surface as it doesn’t let the convection effect take place.

All of the above features make silicone oil a preferred choice for being used in paints as an additive.

2. SILICONE OIL, THE BEST LUBRICANT

Silicone oils or silicone fluid have proved to be an excellent lubricator for rubber and polymer surfaces and this ability to work as a lubrication agent is due to multiple characteristics of silicone oil which include low friction coefficient, stable viscosity over a variety of temperatures whether low or high. Silicone fluids are much more resistant to chemical decay oxidation, both of these properties allow the silicone oil to add corrosion protection to metal provinces.

Silicone fluid is not a good lubricant where there is steel-to-steel friction but has proven other ways for some other metals. Silicone oils were previously used to cool clutch fan assemblies in cars and other motor-operated vehicles.

3. SILICONE OIL INDUSTRIAL RELEASING AGENT

Releasing agents are substances that are applied to the molds to prevent the substances from sticking to the mold. Silicone oil is known to be one of the magnificent releasing agents. The main property which makes silicone oil a good releasing agent is low surface tension and thermal stability which allows it to spread perfectly over an irregular surface.  Silicone release agents in multiple industries, such as the food processing industry, tire manufacturing industry and die casting industry.

4. SILICONE OIL IN CAR POLISHING

Silicone oil has found its position in the automotive industry as a principal component in car polishes. Silicone oils offer shine and protection to the paint with added benefits of anti-corrosive actions. As silicone oil spreads evenly on the surface and it is transparent, it gives the perfect finish to uneven surfaces. The rubbery characteristic of silicone oil also provides an extra layer of transparent covering which protects the surface of the paint from normal polishes. Silicone oil not only covers the color of the car but can also cover the interior surfaces and even glass.

Silicone oil for car polishing

 

5. COSMETIC USAGE OF SILICONE OIL

Silicone oil is often used in cosmetics, primarily because of its low surface tension. Silicone oil helps the cosmetics to spread evenly onto the skin. Silicone oil in cosmetics locks the moisture coming out of the skin and prevents skin from getting dry and gives a twinkling look that shines on every angle. Lipsticks have silicone oils combined with phenyl group which gives a higher refractive index and helps the glossy appearance of lipstick on lips. Sunscreen lotions also have silicone oil as a primary component as the silicone oil removes stickiness and reduces the amount of oil coming out of the skin.

silicone oil used in cosmetic products

6. SILICONE OIL IN SILICONE SEALANT

Silicone oil is one of the best sealants, containing angle component silicone. In the utility of silicone sealant, thinking about the construction, regularly want to regulate the sealant viscosity, decrease the viscosity of the adhesive, enhance the development drift and the lubrication of the adherents, and consequently the desire of dimethyl silicone oil as a plasticizer. At the identical time, being part of the plasticized agent can cure adhesive complete overall performance improvement, enhance adhesive joints of excessive influence resistance, anti-fatigue overall performance, etc. On the other hand, the addition of plasticizers will affect the different residences of silicone sealant. The tensile electricity of the silica gel decreases step by step with the make bigger quantity of the plasticizer, and the elongation at ruin is increasing.


 7. HYDRAULIC OIL IN AIRCRAFT

Silicone hydraulics has been used in the aircraft industry for a long time and there are multiple advantages of using silicone hydraulic oil. Its high resistance to oxidation and great thermal stability leads to increased life of silicone hydraulics oil and require longer changing intervals making it cost-effective. High anti-wear properties and greater strength of film provided by silicone oil led to the protection of parts of the engine. Moreover, aircraft faces a variety of temperature going into the different layers of the sky and silicone oil can bear low temperatures like -50°C and higher temperatures of 250°C.

silicone oil used for aircraft engines

8. SILICONE EMULSION

When silicone oil is added to an aqueous environment, it results in the production of silicone emulsions. Silicone emulsification significantly reduces the viscosity, and this is sometimes required. The physical properties of silicone emulsion change abruptly after polymerization. Particularly if the viscosity change is needed, polymerization is a great idea. Silicone emulsions don’t have any health-related issue as it is less viscous and generally more aqueous. Silicone emulsions are widely used in the cosmetic industry and are now being used as release agents in the food processing industry to avoid stickiness to molds.

 

9. BREWING INDUSTRY AND SILICONE OIL

Silicone oil is being used in breweries for improving the quality of the beer particularly due to defoaming properties of the silicone oil. The silicone oil which is used in the brewing industry is known as food grade version of silicone oil. It is used in all three key processes of making a beer which are distillation, brewing, and fermentation of the beer.

Silicone oil used in beer industries

10. USAGE IN THE TEXTILE INDUSTRY

Silicone oil is an integral part of the textile industry, and it is so much important that some textile owners have started their production of silicone oil. Silicone oil addition to the textile manufacturing process brings in all the qualities needed in a perfect fabric such as a perfectly smooth and soft finish, and waterproofed material. Silicone oil adds a bunch of other characteristics to textile production like flame avoidance, antistatic performance, and color-fixing properties. When silicone oil is added to the dye in the dyeing process, the result is a cool finish. Silicone fluids are also known for increasing the storage time for textiles and also there is the benefit of sharp color appearance.

Silicone oil for textile industry


11. SILICONE OIL AS DEFOAMER

Silicone oil is often used as a defoamer particularly due to the small surface tension offered by it. Other features of defoamers or ant0foaming silicone oil include readily emulsification ability, not reactive at all, increased thermal stability compared to other defoamers, great ability to remove or vanish the foam, and high pH stability (can operate over a wide range of pH). Silicone oil defoamers can be stored for over 12 months if the temperature is kept below 45 Centigrade. Silicone defoamers are used in the oil and gas industry because silicone oil defoamers provide excellent benefits over organic substances. The quantity of silicone oil defoamers needed to achieve a certain defoaming effect is much lower than substances that need much more of it. Silicone oils are often used in little amounts in restaurants for defoaming and anti-stick properties. In such situations, silicone oil is combined with cooking oil for deep frying. Silicone oil should not replace cooking oil entirely as this can become lethal, and it is a very notable health hazard associated with always remembering to use food-grade silicone oil.

12. MEDICAL USES OF SILICONE OIL

Silicone oil has been famously known for its medical importance, although we have discussed in detail how silicone oil is medically used in ophthalmic surgery.

 

medical uses for silicone oil

Let’s have a brief overview again of some of the uses:

  • Ophthalmic Surgery: Silicone fluid tamponades have been used as a replacement for vitreous humor in the posterior chamber of the eye when there is retinal detachment due to several reasons. Silicone fluid when injected into the eye prevent aqueous humor to reach the retina and allows the retina to heal itself. Silicone oil is left in the eye for an extended period of about 3 months or in some cases can be left permanently. Several properties of silicone oil such as viscosity, low friction coefficient, and ability to resist sheer stress make it a perfect candidate for this application.
  •  Drug Delivery System: Recently trials have been conducted in which silicone oil-filled eyes have been shown to uptake more drugs than the normal eye and this pharmacokinetics may significantly improve the use of silicone oil as a drug delivery system for deep eye structures.
  • Medical Instruments Lubrication: Microbe infestations of medical instruments have been a major problem in surgical settings. Nitric Oxide has been known to be incredibly effective against microbes, bacteria in particular. When applied on the surface of medical instruments, silicone oils create a physical barrier between the microbe-infested environment and the tools. A new combination of nitric oxide-releasing silicone oils has been prepared for utilizing both properties of nitric oxide for antibacterial effects and the physical barrier and lubricating effects of silicone oil.
  • Anti-Flatulence Drugs: Silicone oil is used as a component for making drugs that reduce flatulence and it often comes in handy for such situations. Such drugs absorb gas formed inside the intestines.
  • Anti-Dermatitis Drugs: Certain silicone oil-based ointment preparations have been made for providing comfort to dermatitis patients having a burning sensation as silicone oils hold water and keep a check on the skin from getting dry. Silicone oils have also shown some anti-coagulation effects.

WHERE TO BUY SILICONE OIL?

Silicone oil is not a rare entity as it can be found online and in stores all over the U.S. and the same is for other countries, but the problem arises where to buy it in bulk for industrial use. The answer is pretty simple, the country where it produced most abundantly and yes, you guessed it right, Its China. China produces more than half of the silicone oil produced in the world and this is the best place to get your hands on the best quality silicone oil while paying an absolutely rare cost.

 

where to buy silicone oil

Now you might be thinking, why not buy it locally, the answer is pretty simple. High labor costs and pretty denting tasks to produce silicone oil make it pretty expensive and local companies sometimes are not capable of large-scale production.

The next question that might be coming to your mind is where to find these Chinese silicone oil companies. Again, the answer is in your hand. Alibaba might provide you with a lot of companies to buy silicone oil from, but the problem is some of these apparent sellers on Alibaba may not be manufacturers rather they are middle people trying to charge you more than the actual costs and an inexperience buyer may end getting fraud so the best choice to go around looking for silicone oil is Manufacturer companies’ websites.

HENG YI TEK is one of the suppliers of silicone fluids in China and provides its customers with the best quality with authority and truthfulness.

We provide a variety of silicone oil and related products; you can check by clicking down below on the list:

● SILICONE OIL SILICONE FLUID HY201

● VOLATILE SILICONE OIL HY-101, 2 CST DIMETHYL SILICONE OIL

● SILICONE DEFOAMER HY-8208

● SILICONE DEFOAMER AGENT HY8201

● SILICONE LEVELING AGENT HY1284

 

 

You can contact Heng Yi Tek for quotes and further details through email, WhatsApp, or phone number. Our sales will get in touch with you about our products and delivery time-related information.